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Abstract

The report presents the stationary solutions of nonlin-
ear equations of motion of a console beam compressed
by a dead force.

1 Introduction

The equilibrium configurations of a thin rod com-
pressed by a dead force were found by Euler in 1744.
It was a first investigation of nonlinear problem in me-
chanics. Up to now exact solutions of dynamic nonlin-
ear equations for a console beam were not found, since,
as a general rule, the nonlinear equations with particu-
lar derivatives does not allow the separation of variables
by means of finite number of operations. However there
are some special cases when it is possible. One such a
case will be described in what follow.

2 The Statement of the Problem

Let us consider the thin flexible beam clamped on one
end and compressed by a dead force on another end.
The cross-section of a bar is supposed to be transversely
isotropic. The classic equation can be represented in
the form of the next system of equations.

The equations of motion
N/(S, t) = gE(Sa t>7

1

M'(s,1) + B (s, )xN(s,1) = 0, .

where f' = 0f/0s, f= df/0t; s is a coordinate of

a cross-section of a bar in undeformed state; the vec-

tor R(s,t) determines the position of a cross-section

in deformed state; p is the mass of the bar per unit

length; p = const; N(s,t) is the vector of intrinsic
force; M (s,t) is the vector of intrinsic moments.

The geometrical relations expresses the condition of in-
extensibility of the bar axis

R'(s,t) = P(s,t)-T,

rr=1, R-R'=1, (2

where 7 is an unit vector directed along undeformed
axis of a bar; R’ is a tangential vector to the deformed
axis of a bar; the properly orthogonal tensor P(s,?)
describes the turn of a cross-section with a coordinate s.

P'(s,t)-P'(s,t) =E

= =

det P(s,t) =1 (3)
The constitutive equation has a form
M(s,t) = C1®(s,t) + (C3 — C1)(R-®)R',  (4)

where C is the bending stiffness; C3 is the torsional
stiffness; ® is the vector of bending-torsion.

The vector of bending-torsion ®(s,t) and the vector of
angular velocity w(s, t) can be found from equations by
Poisson [1].

P(s,t) = w(s, )xP(s, t),

P
- (5)
P'(s,t) = ®(s,t)xE(s, 1)
From the equations (5) the next equation can be de-
rived

B(s,t) = w'(s, 1) +w(s, t)x(s, 1) (6)

Thus we have a closed system of equations for unknown
functions R(s,t), N(s,t) and P(s,t). If the tensor of
turn P(s,t) is known then the vector of position R(s,t)
can be found by means of integration of equation (2).
So the basic unknowns are the vector N(s,t) and the
tensor P(s,t).

However for this we have to transform the first equation
from system (1). Differentiating the equation (1) with
respect to the coordinate s and making use of (2) and
(5) we obtain

N" = pR/(s,t) = ploxE + wxExw]-P-1  (7)

Also we have an additional boundary condition which
follows from (1)

N'(0,t) =0 (8)

Let us formulate boundary conditions

s=0:  RO)=0, POH=E (9



s=1: Nt =-Qr., MUt =0, (10)

where E is an unit tensor of second rank. When @ > 0
we have a bar compressed by a constant force Q.

The initial conditions have a standard form
R(s,0) = f(s),  R(s,0) = v(s) (11)

In what follows we accept the strong restrictions on the
functions f(s) and v(s).

3 Alternative Statement of the Problem

Sometimes it is more convenient to use the alternative
statement of the problem in terms of right quantities
[1]. Let us introduce into consideration the right vec-
tor of bending-torsion ¢(s,t) and the right vector of
angular velocity Q(s,t)

®=P¢, w=PQ = P=pPxQ, P =Pxp (12)
The equation (6) takes a form
0=90 - 0x¢ (13)

Let us introduce the new variables

In order to transform the equation of motion (1) we
have to differentiate the first equation from (1) with
respect to the coordinate s and to use the equation (2).

Now the equations of motion (1) and (7) take the form
(n' 4 ¢xn) + ¢x(n'xpxn) = plQxT 4+ Qx(Qx1)], (15)

m' + ¢xm + xn = 0 (16)

When deriving the equations (15) — (16) the next iden-
tity is useful
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The constitutive equation (4) can be rewritten in terms

of new variables as

m=C1¢+ (C3 - C1)(¢1)T (17)

The boundary conditions for system (12) —
the form

s=0: n' + ¢xn =0, P0,t)=E
~QPT-r,  m(0,t) =0

(17) have

s=1: n=

In such a statement the basic system does not contain
a tensor of turn and a vector of position.

4 Integral by Poisson

From the equations (2) and (5) it follows
R'=®xR = &= (2-R)R +R'*xR" (19)

The second equation in (19) expresses the represen-
tation by Poisson (1833) for the vector of bending-
torsion. Substituting (19) into (4) we have

M = C1R'xR" + C3(R"-®)R’ (20)
From this equation it follows
M-R" =0, M-R = C59-R (21)
The second equation from (1) shows that
MR =(M-R) -M-R"=0
This equation and the equations (21) give to us

M-R' = C3R'-® = A(t) = const(s) (22)

The integral (22) was derived by Poisson [2,p.627]. The
conditions (10) shows that the function A(t) is equal
to zero. Thus we have

M = Cyuxv/, ®=uxu', u(s,t)=R(s,t) (23)

Making use of (23) the second equation from (1) can
be rewritten in the form

ux{Cru” + N] = 0
or in equivalent form
Civ/ + N=As,t)u = IA=N-u—Cil|* (24)

For the vector N the next expression can be found
from (7)

l l

N = —Qr—pli-) [ te df+p/(£—s>@<f,t>d£

0
(25)
Now the equation (24) can be rewritten in the form

CiR"Y — (AR') + pR =0, (26)

where ) is given by second expression in (24) and the
expression (25) must be replaced by

l
N(s,t) =Qr — p/E(f,t)dE

The boundary conditions for the equation (26) have the

form
s=0: R=0, R =r;

7. "o /11 /o (27)
s=1: R'"=0, ChR" - AR =Q1



The problem (26) — (27) is very complicate in a gen-
eral case for an exact analytical solution. Only static
solution of this problem is well known. The problem
(26) — (27) can be rewritten in terms of vector u = R’

Cru¥! — ()" + pii = 0, (28)
s=0: u=r, Ciu"" — (Au)’ = 0;

v=r o awr-ow| =0
s=1: u =0, Civ’ — M= Q1

5 Stationary Movements of the Bar

Let us consider the special kind of the movement which
can be defined by tensor of turn

P = Q(v1)-Q(Ve) Q" (v1) = Q(Ve),
= = = - (30)
€= g@/’f)‘@(w

where ¥(s) is an angle of nutation and it does not de-
pend on time; 9 (t) is an angle of precession and it does
not depend on space coordinate; ¢(t) = —(t) is an
angle of own rotation.

Also we accept the relations

P(t) =w = const, (0)=0 (31)
e(t) =0, €0)=¢

The vector ¥(s)e(t) is the vector of turn. The left w
and the right  angular velocities can be found from
the expressions [1]

w = w[(1 — cos V)T +sindrxe], w =, (32)

Q = w[—(1 — cos V)T + sin Irxe] (33)

The left ® and the right ¢ vectors of bending-torsion
are defined by formulae

O =¢=1(s)e(t) (34)
The next representations are valid
u(s,t) = R'(s,t) = cosIT — sin¥rxe(t),

(35)
ii(s,t) = w? sin¥rxe

Making use of (35) the expression (25) can be rewritten
in the form

N = -Q1 — T(s)Txe,

l
T(s) = pu?[(1 - s) mm@@—/@—@mw&m

(36)

o _

The function A(s,t) in such a case has the form
A(s) = —cosYQ +sinIT'(s) — o', (37)

i.e. the function A does not depend on time. Let us
introduce the vector of displacement

R=s1+w=(s+u)T +wrxe

Making use of (35) we have

x T=R -1=1+v =cos?,

If
2

(38)

y=u-(rxe) = R'-(txe) = w' = —sind

If we take into account the relations (35) and (38) then
the system (28) — (29) can be rewritten in such a man-
ner

Ciz" — = Q, (39)
s=0: z=1, s=1: =0
Cry"" = (M) = pw?y =0, (40)

s=0: y=0,Cy" —(\y)' ;o =0
s=1: y =0, Ciy/ —\y=0

The problems (39) — (40) are connected since the func-
tion A depends on functions x and y. May be it would
be easy to consider another approach.

The equations (7), (23), (35) and (36) give us
NU =pii =
= T"(s) = —pw?sind = pw?w’ = (41)

= T'(s) = pw?w(s)

For the bending moment we have an expression
M = ' (s)elt)
Let us calculate the vector product
R'XN = (Qsind + T cos9)e(t)

Now the second equation from the system (1) takes the
form

C19" + Qsind + T cosd =0 (42)

From the equations (41) and (42) it follows
n’ /
i () | re(is) -t
(43)

Boundary conditions to this equation have the form

Cq

s=0: w=0, w =0;
"

/
s=1: W, C|—<4— | +Qu' =0
V1—w?

(44)



Thus we obtain nonlinear spectral problem. For any w?
we have a trivial solution w = 0. The rigorous existence
proof of nonlinear solutions for the problem (43) — (44)
is not known. Let us suppose that this problem has a
real solution w(s). In such a case it is not difficult to
obtain the formula
1 1 2 1 2
pw2/w2d8:01/w—d‘92_Q/w7ds (45)
(1—w”) 1—w?

0 0 0
The spectral problem (43) — (44) is not usual one be-
cause of nonlinearity and the presence of two parame-

ters Q and pw?. Let us remind that the parameter w
has a meaning of the velocity of precession.

6 An Asymptotic Solution of the Basic
Problem
Let us introduce the new variables
s=1, 0<E<1; ¢=QI*/C; N =pl'/Cy;

w(s)

l

w(s) = plv(§), p= max

s=[0,1] ’

wEI<1, p<l
In such a case the problem (43) — (44) takes the form

/ I
1 v/l
\/1_M27)/2 \/1_M27)/2

li
+q<—,1_vlltm> —AZUZO,
fr=df/dg

£=0: v=0,0 =0,

(46)

(47)

!/
E=1: 2" =0, (——11}“%'2) +qv' =0
Let us look for the solution of the problem (46) — (47)
in the form of asymptotic series

v=>Y pPu),  N=> pHan (W)
k=0 k=0

Since we look for a solution on the finite interval then
we can use the simplest form of asymptotics. Substi-
tuting (48) into the equations (46) — (47) we obtain the
system for definition of functions vy (). For the func-
tion vg(§) we have a problem
vtV + qui — Mg = 0, (49)
E=0: wvy=0vy=0;
’ (50)
E=1: vf=0, vi'+quy=0

It is not difficult to prove that all eigenvalues of the
problem (49) — (50) are real numbers. For the problem
(46) — (47) we are not able to prove such a fact. We
have to remember that only nonnegative eigenvalues of
the problem (49) — (50) have a physical sense.

7 Conclusions

The nontrivial solutions of the problem (46) — (47) can
be named the dynamic forms of equilibrium of the bar
compressed by a dead force. The usual forms of equi-
librium correspond to the eigenvalue A? = 0, whereas
the dynamic forms correspond to the case A2 # 0. The
eigenvalues A2 # 0 determine the angular velocities of
rotation of the bar.
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