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Rotations of Rigid Body with Small Angles of Nutation

There are many problems which can be reduced to the analysis of rotation of rigid bodies under small angles of
nutation. In such cases it is possible to obtain the simple linear equation with constant coefficients, solution of which
gives all importent characteristics of the motion. In order to show the main futures of our method we shall consider
only very simple example. However the method can be upplied to much more difficult problems.

1. Derivation of basic equation

Let us consider axially symmetric body with fixed point O. The unit vector m has vertical direction. The tensor of
inertia of the body in reference position has a form θ = (λ − μ)m⊗m + μE. In actual position tensor of inertia has
a form θ(t) = P ·θ ·PT = (λ − μ)m′⊗m′ + μE, where m′ = P ·m, P is a turn-tensor of body: P ·PT = E. Let ω

be an angular velocity of the body ω = −(Ṗ ·PT )×/2 — see Zhilin P. A., ZAMM, 75, 1995, S.133-134. If we accept
that the axis of the body is clamped in elastic circular plate, then the reactive moment Me can be found by means
of approximate formula Me = cm′×m, where c is a stiffness of the plate. Of course, the vector m′×m is supposed to
be small. The turn-tensor P can be represented in terms of eulerian angles in the form

P = Q(ψm)·Q(ϑe)·Q(ϕm) , e·m = 0 , |e| = 1 ; (1)

where ψ, ϑ, ϕ are the angles of precession, nutation and own rotation respectively; β = ψ + ϕ. Let us assume, that
angle of nutation ϑ is small one: |ϑ| � 1. Then approximate formula for P takes a form

P =
(
(1 − 1

2
γ2)E + γ×E + 1

2
γ⊗γ

)
·Q(βm) , γ = ϑQ(ψm)·e , (2)

where γ2 = γ·γ = ϑ2. In the (2) quantities of an order O(γ3) were rejected. An angular velocity ω and unit vector m′

corresponding to the turn-tensor (2) can be found out by means of expressions

ω = (β̇ − 1
2
ϕ̇γ2)m + γ̇ + β̇ γ×m + O(γ3) , m′ = (1 − 1

2
γ2)m + γ×m (3)

Now we are able to write expression for angular momentum L

L = P ·θ ·PT ·ω = Lmm + μ γ̇ + λβ̇ γ×m + O(γ3) , (4)

where the quantity Lm will be given below. The second law of dynamics by Euler in our case has a form

L̇ = Me − lq m×m′ = −(c − lq)γ , (m′×m = −γ) , (5)

where q is the weight of the body, l is a distance from O to the center of mass of the body. The projection of the
equation (5) on a direction of m gives

Lm = λβ̇ + γ2
(
(μ − λ)ψ̇ − 1

2
λϕ̇)

)
= const (6)

If we project the equation (5) on a plane orthogonal to m and take into account the expression (6), then we shall
get the next equation

μγ̈ − Lmm×γ̇ + (c − lq)γ = 0 (7)

Solution of (7) gives to us the angles ψ and ϑ. The angle ϕ can be found from (6), where β = ϕ + ψ.

2. Determination of eulerian angles

The particular solution of (7) can be found in a form

γ = Q(ptm)·a, a·m = 0, a = const, p = const ⇒ γ̇ = pm×γ, γ̈ = pm×(pm×γ) = −p2γ



If we substitute these expressions into (7), then we shall get

μp2 − Lmp − c + lq = 0 ⇒ p1,2 =
(
Lm ±

√
L2

m + 4μ(c − lq)
)/

2μ

A general solution of (7) has a form

γ = Q(p1tm)·a1 + Q(p2tm)·a2 (8)

Thus a vector γ is a sum of two vectors rotating around m with angular velocities p1 and p2. The expression (8)
contains four arbitrary constants (vectors a1 and a2 are orthogonal m). In addition we have a constant Lm and one
more constant will be found after integration (6). So we are able to satisfy any initial conditions. By using (8) and
(2) we can find a vector of nutation

ϑe = Q1 ·a1 + Q2 ·a2 , Qα ≡ Q
(
(pαt − ψ)m

)
, α = 1, 2 (9)

From here we see that a regular precession may take place only in two cases

a) ψ = p1t, a2 = 0 , b) ψ = p2t, a1 = 0

From (9) we have two equations to find the angles ϑ and ψ

ϑ = e·Q1 ·a1 + e·Q2 ·a2 , 0 = (e×m)·
(
Q1 ·a1 + Q2 ·a2

)
(10)

3. An example

Let us consider following initial conditions

t = 0 : ψ = ϕ = 0, ϑ = ϑ0 ; ψ̇ = ϑ̇ = 0, ϕ̇ = ω0 (11)

From here it follows

t = 0 : γ = ϑ0 e, γ̇ = 0 , Lm = (1 − 1
2
ϑ2

0)λω0

Using these conditions and an expression (8) we have

a1 = − p2ϑ0

p1 − p2
e , a2 =

p1ϑ0

p1 − p2
e

Expressions (10) in such case take form

ϑ =
ϑ0

p1 − p2

(
(p1 cos p2t − p2 cos p1t) cos ψ + (p1 sin p2t − p2 sin p1t) sin ψ

)
,

(p1 sin p2t − p2 sin p1t) cos ψ − (p1 cos p2t − p2 cos p1t) sin ψ = 0

Hence we have the final result

ϑ(t) =
ϑ0

p1 − p2

√(
p1 − p2

)2 + 2p1p2

(
1 − cos(p1−p2)t

)
, tg ψ =

p1 sin p2t − p2 sin p1t

p1 cos p2t − p2 cos p1t

In order to find velocity ϕ̇ we have to use (6) and expression

ψ̇ =
p1p2 (p1 + p2)

(
1 − cos(p1−p2)t

)
(
p1 − p2

)2 + 2p1p2

(
1 − cos(p1−p2)t

)

Unfortunately there is no place to give an analysis of the solution.
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